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Plumes and waves in two-dimensional turbulent thermal convection
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We have conducted a high-resolution, two-dimensional direct numerical simulation of RaylaighdBe
convection with stress-free and periodic boundary conditions at a RayRaymumber of 18 and Prandt(Pr)
number of unity. An aspect-ratio three box has been considered. A single cell has been used as the initial
condition. First, the flow develops into time-dependent convection with a strong asymmetry and highly con-
voluted thermal plumes delineating a large-scale circulation. Smaller thermal plumes detach from the boundary
layer and extend over the entire cell, creating a local inversion of the temperature gradient adjacent to the
boundary layers. Then the conditions leading to the formation of internal waves are fulfilled, as the local
Richardson number decreases sufficiently small to cross the linear threshole- 6f28i Together with the
strong shear, convective rolls with a Kelvin-Helmholtz wavelike character are produced. The secondary bound-
ary layer itself becomes unstable and produces smaller plumes. At later times, the large-scale circulation is
destroyed and the internal waves disappear. A Reynolds number, based on the global scate;0f, Re
attained at this stage. Only isolated thermal plumes and vortices are present. Thus, internal waves can be
generated at finite Prandtl number fluids for sufficiently high Ra in the presence of a large-scale circulation.
Spectral analysis reveals that the kinetic energy decays with a logarithmic slep®, @fhile the logarithmic
slope of the thermal variance has a value of arour’gd [S1063-651X%99)05709-9

PACS numbd(s): 05.60—-k

[. INTRODUCTION scaling has been proposed on physical grounds by Castaing
etal. [2] and is due to a thermally stratified mechanism

Turbulent convection has been studied experimentally fof12,13, but inconsistencies with the Boussinesq, incom-
many years, but much impetus has been provided by thpressible approximation have also been nd&d4].
concept of “hard-turbulent” convection in the last decade Compared to laboratory experiments, numerical studies of
[1,2]. Ra as high as 10 has been reached in the laboratory “hard-turbulent” convection have been few and far between,
[3]. Experiments have been conducted in low Prandtl fluiddecause of the inherent technical differences in the compu-
of helium gag[1] and in watef{3]. One of the primary sig- tational infrastructure of many institutions. A few numerical
natures of “hard-turbulent” convection has been suggestedtudies have been conducted for three-dimensions either with
to be the prevalence of disconnected plumes, which are urstress-fred 15,16 or with rigid boundarie$17,18. In spite
able to reach the opposite thermal boundary layer. Such af the simplification of the physics, two-dimensional simula-
scenario, together with a strong “wind” associated with ations represent logically a first step to study this problem, as
large-scale circulation, is well suited for creating just atopone can carry out the computation and the visualization
the thermal boundary layers, a local inversion in the temimuch easier than for the much more cumbersome three-
perature gradient. Thus, this region becomes thermally stablgimensional (3D) simulations. Werne and co-workers
stratified and internal waves can be generated there, in tH49,20 have studied from 2D simulations the soft to “hard-
presence of a sufficiently strong shear flow. Hence, the chatubulent” convection and plume dynami¢21], but these
acteristic frequency recorded by Casta@ial.[2], Wuet al.  studies were restricted to Ra less than 8. In this study
[4], and Vincentet al. [5] is the well-known Brunt-Vsda  we will use a spectral method with a high-resolution grid to
frequency. Numerous experimental and theoretical studiestudy convection of Ra ranging from 1@ 1%, as we are
have been carried out since that time on the shear interactidnterested in the development of waves and subsequent bi-
near the thermal boundari€8—9|. furcations in the plume dynamics.

The other fundamental issue of convective turbulence is We emphasize here that direct numerical simulations
whether the scaling of the Nusselt numigdu) with Ra goes (DNS) are needed to unveil new phenomena, especially
as Nu~R&'". Spectral characteristics of “hard-turbulent” those concerned with the formation of secondary and tertiary
convection show that there exist logarithmic slopes as @lumes and waves and their nonlinear interaction with the
function of the shell averaged wave number. For the kinetidboundary layers. The purpose of this work is to obtain a
energy spectrum, a value of arourd? has been found for high-quality DNS solution of a complicated flow before we
the logarithmic slope, while for the variance of the thermalwill attempt to simulate this with the large-eddy simulation
fluctuations a value of-£ has been inferreffl0,11]. Such a  (LES) approximation(e.g., Ref[22]).
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II. NUMERICAL ALGORITHM

The dimensionless equations describing finite Prandtl
number convection are in the Boussinesq approximation

V.V=0, (1)
NV
EZPFAV-F P(VXw+PrTe,), (2
aT
E+V'(VT)=AT+ RaV,e,, 3

wheret is the dimensioneless time based on thermal diffu-
sion, T is the temperature deviation from the linear profile,
is the vorticity, ande, is the vertical unit vector directed
from the top to the bottom of the fluid layer. Ra is the ther-  FIG. 1. Convective temperature field. Sizes of the box lare
mal Rayleigh number for pure based-heating and Pr is the-3, L,=1. The Rayleigh number is Ral(® and the Prandtl num-
Prandtl number. We have taken a Pr number of unity. ber is Pe=1. The numerical resolution isl, =768, N,=256 grid

The scale units are the thickness of the layer, the thermadoints. Temperature history between thermal diffusive time3
diffusive time and the temperature difference between top<10 3TDT (thermal diffusive timg (&) andt=6x10"3TDT (d).
and bottom divided by the Rayleigh number. The thermallime interval between two consecutive figurestis10 3 TDT.
diffusive time is the proper scale for large Prandtl thermallnitial conditions are two large counterrotating roll&) t=3
turbulence. For very small Pr, the viscous-diffusive timex10‘3TDT. Small plume appears near the top and thus an internal
would be a more suitable choice. thermal boundary layer is developed. Those plumes are bent by the

The numerical method used here is a spectral methoderY strong horizontal velocity creating a local inversion of the
which is based on the sine-cosine functions that are naturall{gmperature gradient and thus an internal thermal boundary layer.
ensuring the top and bottom free-slip boundary condition his cref\?fes an ideal condition for internal waves to developt
for the velocity, vertical fixed temperature gradient and hori-— 410" TDT. The wave breaks at the e_Xtrem'tLOf the new ther-
zontal periodicity. Such methods have been largely in use fort]_1a| bou_nsdary Iayeu_(s_ee _the arroy (c) t=5x10 " TDT. @t
thermal convection for finite Pfe.g., Ref.[15]). The time =6x10 “TDT. Originating from the_maJor ascc_endmg plume

- . . : (right) and breaking near the other major descending pldefe,

marching is a mixed Ieap-frog—Cra_mk-Nlch(_)Ison tWO'Stepthe new thermal boundary layer extends now horizontally over the
scheme. We have used a modified version of a two

di . | cod . iinally for double diffusi whole cell. Later on, secondary thermal plumes will be created from
Imensional code written originally for double diffusive con- g secondary internal horizontal thermal boundary layer.

vection[23]. P is the usual divergence-free spectral projector
[Pij= (8 —kik;/k?)], with k being the wave number. This s the ratio between the square of the buoyancy and turnover
is exactly equivalent to carrying out a two-step pressure Coffrequencies

rection scheme for the momentum equation.

Since the thickness of the boundary layers varies ke o[V, -2
~Ra’”® and one can expect that the plumes are detached RI=N7—]
parts of the boundary layers, the minimum number of
(equally spacedgrid points varies such al~R&’®. For  whereN is the buoyancy(Brunt-Visaa) frequency written
very large Rayleigh numbers and outside the boundary layin terms of the temperature and viscous-diffusive time units
ers, the assumption of thermal and velocity homogeneities is
reasonable. The aspect ratio is 3 and the initial condition is a , 1 96T
large scale flow, i.e., a single cell. The grid is equally spaced T, dz (@)
with spectral accuracy and the number of grid point&js
=256 andN, =768 for Ra= 10°. Together with the tempera- Here 5T is the convective thermal deviation from the linear
ture equation, we computed the evolution of a Lagrangiamprofile. If the local Richardson number decays below Ri
tracer distribution =0.25, the layer is linearly unstable to internal waves.,

Ref.[25]). The minima for Ri correspond to highest inverse
d temperature gradients and the almost horizontal inverse lay-

- TV-(VC)=0. (4 ers thus gravity can play the role of a restoring force. An-

other dynamical output in finite Pr convective flow is the
Reynolds number Re, which measures the vigor of inertial

(6

whereC is the tracer concentration. We started all runs with
a linear profile as the conducting temperature profile. Théorces.
local (gradienj Richardson numbefe.g., Ref[24])

IIl. RESULTS
-2 o . . .
Ri:iﬁ‘ﬂ- ‘7_Vx) (5) We have initialized the solutions with two cells in an
Tg dz \ oz aspect-ratio three box. Steady states were obtained for Ra
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bottom

FIG. 4. Schematic of flow fields displayed in Figs. 1-3. The
vertical flows have a tendency to split into secondary tributaries,
similar to a river delta. We observe here the double-decker nature of
the horizontal boundary layers, consisting of a juxtaposition of hot
and cold anomalies overlying one another. Internal waves are de-

FIG. 2. Transverse vorticity corresponding to Figs.(&)—1(d). veloped along the interface of this double-decker boundary layer.

ranging between f0and 10 by integrating up to 20000 the snapshots of convected thermal anondalwhich is de-
time steps(1 time step=10"°TDT). Other types of initial fined to be the total temperatui® minus the conductive
conditions may induce chaotic time-dependence even for Remperature profileT,(z). These panels have been taken
numbers as low as810°, as shown in the work on infinite  from the early stages in the flow development, following the
Prandtl number convectidi26]. For these initial conditions, initial transient. Figure 1 shows the development of the cold
the first interesting time-dependent activity was observed asnd hot plumes diving into the opposite bottom and top
10% and we will focus our attention on this high Rayleigh boundary layers and branching in the process. This type of
number because of the interesting dynamical features devedtrong boundary-layer interaction produces secondary hot
oped, such as the waves. Such a high Rayleigh number eind cold flows to develop, giving rise to a whirling interior
10° has not been investigated before in two-dimensionafiow. The schematic of this type of flow is sketched in Fig. 4.

finite-Prandtl number convection. The vertical flows have a tendency to split into secondary
tributaries, similar to a river delta. We see here the double-
A. Incipient stage decker nature of the horizontal boundary layers, consisting of

Convection at high Rayleigh number is characterized i2 juxtaposition of hot and cold anomalies overlying one an-

the “hard-turbulent” regime by filaments and patches ofother. This condition is favorable to the production of inter-

thermal anomalies with opposite sigf&. In these circum- nal waves, which are observed to develop along the interface
stances, the juxta ositionpgf hot an?i cdld thermal anomalie(s)f this double-decker boundary layer.
, J p Figure 2 shows the corresponding temporal development

becomes the rule rather than the exception. In Fig. 1 we plo(gf the vorticity w. The light and dark colors denote respec-

1 tively the positive and negative values of the vorticity. The

| hot

cold
>0
(b)
<0
0.25
Ri

0.0

(c)

Richardson number

FIG. 3. Local Richardson number corresponding to Figa)-1
1(d). Color scale is for R0.25. Black denotes values above Ri FIG. 5. Subsequent evolution of the shear layer at time
>0.25. The RE  values for the Richardson number are located=0.3 10°2 TDT after the shear has been initiated near the bound-
mainly at the strong temperature gradients but internal waves caary layers(a) Temperature fluctuatiod. (b) Transverse vorticityo.
only be produced at the instant where the corresponding layers afe) Local Richardson number Ri. Only values ranging for Ri
almost horizontal. <0.25 are shown. Otherwise, black color for higher values.
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hot ; 1
(@
cold 0

FIG. 8. Tracer concentratio@ corresponding to Fig.(&). Con-
centration gradients are located where the high vorticity gradients
are. In two-dimensional turbulence, the vorticity variance is a con-
served quantity.

FIG. 6. Two subsequent snapshots of the convected thermal
anomaly 6. (a) Time is t=0.9 102 TDT. (b) Time ist=1.5  serve that many thermal inversions begin to appear and the

10 2TDT. plumes do not reach the opposite side, as characteristic of
“hard-turbulent” convection. The last vestiges of cellular
wave nature is more clearly delineated by the vorticity sig-structure are destroyed in Fig(l®, as small-scale features
nature. Its development at the bottom boundary layer is il-kdominate from this point on. The Reynolds number of the
lustrated by the arrow in the figure. The Richardson numbeconvective flow based on the integral scalel gf~0.25 is
Ri serves as a linear criterion for the development of secondRe~500, while the Reynolds number based on the Taylor
ary shear instabilities in stratified flows.g., Ref[25]). For  microscale ofA~0.1 is Rg~200. In Fig. 7 we show the
Ri less thans, shear instabilities can develop according totransverse component of the vorticigy, , which reveals the
linear theory[24]. In Fig. 3 we have plotted the spatial dis- complicated nature of the vortex dynamics of the plumes as
tribution of the local Ri associated with the frames shown infor instance the two pairs of vorticédipoles. The concen-
Fig. 1. We have thresholded the values of Ri to black for Ritration field is another signature which can reveal the cumu-
above 1. The white arrows in Fig. 3 point out the boundarylative history of the dynamics as in the mixing of a passive
for Ri=0.25, which coincides with the waves shown in Fig. scalar. In Fig. 8 we plot the cumulative history of the mixing
2. Sharp fronts with R 0.25 are found at narrow zones with of the concentration. This panel represents the superposition
sharp gradients in the convected temperature field. In thesgf the many images and gives an idea of the overall dynam-
zones there is a strong tendency for shear instabilities t&cs of the passive scalar field. Figure 8 shows a threshold
develop and to produce wavelike features. In terms of beingmage of the mixing and emphasizes the coherent features of
a valuable diagnostic tool for detecting the onset of wavelikehe plumes.
structures in thermal convection, the sharp boundaries of the The spatial distribution of the local Nusselt number yields
Ri distribution yield the sharpest and clearest signature of alvaluable information of the convective flux locally. This
of the fields displayed up to now. Figure 4 shows a scheguantity Nuf,z,t) can be evaluated at each time step by
matic of this type of wavelike flow. evaluating a local integral about the grid point. In Fig. 9 we
In order to validate the idea of the Richardson numberdisplay the local Nu field for the time step corresponding to
mapping coherently with the other dynamical quantities, weFig. 6(a). There is a maximum peak heat transfer in the heart
have conducted the following experiment. We started af the plumes from the local advection. The vast disparity of
simulation with, as initial conditions, a statistically stationary the local Nu field in “hard-turbulent” convection has also
convective flow at Rayleigh number R4C®. At time t been pointed out by Grossmann and LohS¢ using the
=0, we also input a strong shear near the top and bottorfrourier-Weierstrass expansion technique. The local Ri distri-
boundary layers. Then we have run the simulation with ndoution for this same panel is shown in Fig. 10. We can ob-
further perturbation. After 30 000 time steps, correspondingerve that the zones of shear instabilities have become ex-
to thermal diffusive timeé=0.03 TDT units, we obtained, as tremely localized and widespread, similar to the fractured
expected, a Kelvin-Helmholtz wavelike pattern at the boundatterns in solid§27]. Again, it is evident that the sharpness
aries. The wave patterns are displayed clearly in Fig. 5 foof the Ri signal in detecting shear instabilities is clearly su-
the temperature deviatiofFig. 5a)], the vorticity [Fig.  perior to the other signatures.
5(b)], and the values of the Richardson number smaller than
Ri=0.25[Fig. 5c)]. IV. STATISTICAL ANALYSIS

In this section we will focus on the statistical treatment of
the flow data for the various signatures. First, we present in

The flow fields at Ra 10° become evermore complex Fig. 11 the shell averaged spectrum of the kinetic energy
with time. In Fig. 6 we show two subsequent snapshots of
the convected thermal anomalz)=T—(T)(z). We ob-

B. Subsequent development

Nu

max

>0 Nu
@ 1
<0
FIG. 9. Local Nusselt number Nu corresponding to Fitp)6

FIG. 7. Transverse vorticityy corresponding to Fig.(@). The  The Nusselt number is maximal in the plumes, where the convec-
plumes consist of two counter-rotating vortices. tive heat flux is the greatest.
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FIG. 10. Local Richardson number Ri corresponding to Fig. S -g
6(a). Minima for the Richardson number are located mainly where 1 10 |
the temperature gradients are but internal waves can be created only :&' [
when and where the corresponding layers are almost horizontal. 5 s
. . . . L 1
KE(Kk), which has been obtained by integrating over the - .
modulus ofk and over the last 100 000 time steps. The grid g 1'014 . 1 NPT R
resolution is demonstrated to be quite adequate, as revealed 0 0.1 1 10 100 100
by the sharp drop in the spectral content. Plotted above the ﬁ Wave number: k

calculated spectrum is a fiducial line with a logarithmic slope

'?f: _%OTT dISSIpa.tlve ri”t?f 1S .‘?ﬁip}etg llle beyihl giea;tﬁrt FIG. 12. Thermal variance spectrum corresponding to Fig. 1.
an su. A comparison of this wi SIOpE shows that - ¢ slope ik %2, This indicates the presence of inverse cascade.

the flow has intrinsically 2D turbulent properties as ShOV\_/nThe large-scale energy arises from the small thermal scales.

by Refs.[28-30. It also demonstrates the property of a di-

rect cascade of the enstrophy at lakgee.g., Refs{31, 2§. lars[35]. In Fig. 14 we plot the shell averaged spectrum of

The shell averaged spectrum of the variance of the con; : . . )
vected thermal anomalg, averaged over time as in Fig. 11, the passive scald and show by comparisen with the fidu-

" " L - cial line (slope of—2) that there is indeed a similarity of the
is displayed in Fig. 12. We have plotted a fiducial curve with 3 . -

a logarithmic slope of-2 for visual comparison. A slope of Zf)?ﬁtbrutrlr] r?ﬁ: tr? tt?en?g%c;)rur? ?;ﬂi(FlgH 1v?/)n me,:?mbla;;b"gﬁ

—2 for the variance in “hard-turbulent” convection has been stribution Tunction of & IS shown | 9. 1o
predicted theoretically by Lohg&2]. Our slope for the ther- e_xponentlal fall-off is (_:Iearly evu_;lent from inspection O_f the
mal variance comes close to theS value in the spectral figure. This exponential decay in the PDF agrees with the

region before the dissipative range, which begins somewherlgeore“.Cal predllc_t|on of the PDF in h|gh Rayleigh number
for k greater than around 40. This slope indicates some Soﬁonvectlon for finite Prandtl number fluids by YakHG)].

of inverse cascade of the ener@gg., Ref[31]).

The frequency spectra of the variance should bear some V. CONCLUDING REMARKS

relationship to the spatial spectra according to Taylor's hy-
pothesig 33] and also Chillaet al. [34]. In Fig. 13 we plot
the frequency spectrum of the thermal anom@biong with
a fiducial line with a logarithmic slope of 2. The correla-
tion between Figs. 12 and 13 is better for low valuek ahd
w.

We have conducted a high-resolution numerical investi-
gation of high Rayleigh number convection for-Ra0® and

a Prandtl number of 1. These simulations employing the
spectral methods, reveal many fine features, such as the pres-
ence of waves, a local inversion of temperature next to the

In strongly time-dependent convection with finite PrandtiPoundary layers, and double-decker boundary layers, which

number the thermal anomalies should behave as passive sd¢¥ve not been observed before in previous 2D simulations
for finite Prandtl number convectiod 9,20 conducted for

Ra between 10and 16. Our two-dimensional simulations

— show that it may not be possible to maintain a large-scale
-5 1 flow under these “hard-turbulent” situations, because of the
~ S r
—_— i —~
1IN ] N'\M/ 1 r Tt
el @ . Slope:-5/3 ------- .
- r [ o >
H 10 [ o o % ]
H N 9 i °
Q ] s
;f:i [ ﬁ -5 |
= 10
L N
O _i4; o -
ol >
p 10
m 0-1 H =
= - I
A Wave number: k -10 . o O]
M g o 10 100 100
FIG. 11. Kinetic energy spectrum corresponding to the statisti- ﬁ Frequency: w

cally steady state part of the run. The slop&is as is the case in
two-dimensional turbulencé&, andE, are the variance spectra for FIG. 13. Frequency spectrum of the time history of the thermal
V, andV,. anomalyé at a single point.
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FIG. 14. Tracer variance spectrum corresponding to Fig. 8. The g, 15, probability distribution functioiPDP) of C corre-
slope isk™°. There is neither buoyancy nor dissipation acting onsyonding to Fig. 14. Compared with a Gaussian peak with the same
the tracer field. The tracer is focussed at where the entrosphy iariance, the wings are exponential. This is related to intermittency
large. The vor_tlgal part of the _plumeébeads of the plum_¢$<_)rre- in the turbulent flow.
sponds to vorticity and thus to inverse cascade of the kinetic energy.

flow behaving with two-dimensional turbulent characteris-
ever-increasing time-dependent generation of smaller antics.
smaller boundary layer instabilities. We have based these With the current computational pow¢t0 GF lops and
conclusions on a simulation, which has exceeded ovér 10memory resource@up to 10 Gbytes much higher Ra con-
time steps. vection (up to 134 is very feasible in two-dimensions but

We have observed the development of gravity waves irmuch more difficult in 3D, because of both hardware and
this high Ra convective flow and the generation of a secondsoftware issues dealing with storage of extremely large data
ary thermal boundary layer from a single elongated plumeSets and th_e attendant \_/|suallsat|on._To our m|nd_, it is vitally
Secondary plumes may be produced from this new interndMportant first to study in great detail the dynamics encoun-
boundary layer. The signature of the local Richardson numtered at R& 108;, which represents a noticeable leap past the
ber has revealed clearly the sites of these shear instabilitie'ard-turbulent” boundary at around>10° [2,19,2Q. In

occurring within a buoyancy-driven flow. The distribution of this study, we did not find any of the “turbulent plumes”
the local Nusselt number also based shows that the mo

eredicted by Rieutord and ZaH®B6] for stellar convection
significant convective thermal transport induced by adjectivétnd Seen in Brandenbueg al.[37]. Perhaps they may occur
straining are developed in the vertical plumes and they ap*®

at higher Rayleigh numbers. This is a subject for future
pear as discrete coherent structures embedded within tf‘?‘éUdy'

plumes. Similar signs of these localized features are also ACKNOWLEDGMENTS

revealed by the vorticity and tracer distribution. Jetlike struc-

tures are found to develop and branch out within the vertical We thank Rashid Zia for technical assistance. This re-

flows, as in a river approaching a delta. search has been supported by the DMS division of the NSF
Spectral analysis has shown that the thermal anomaliedNSF-DMS 96-22888 These simulations were conducted at

behave as a passive scalar from both the spectra of the théwlinnesota Supercomputer Institute on the IBM/SP2 system.
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