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Plumes and waves in two-dimensional turbulent thermal convection
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We have conducted a high-resolution, two-dimensional direct numerical simulation of Rayleigh-Be´nard
convection with stress-free and periodic boundary conditions at a Rayleigh~Ra! number of 108 and Prandtl~Pr!
number of unity. An aspect-ratio three box has been considered. A single cell has been used as the initial
condition. First, the flow develops into time-dependent convection with a strong asymmetry and highly con-
voluted thermal plumes delineating a large-scale circulation. Smaller thermal plumes detach from the boundary
layer and extend over the entire cell, creating a local inversion of the temperature gradient adjacent to the
boundary layers. Then the conditions leading to the formation of internal waves are fulfilled, as the local
Richardson number decreases sufficiently small to cross the linear threshold of Ri50.25. Together with the
strong shear, convective rolls with a Kelvin-Helmholtz wavelike character are produced. The secondary bound-
ary layer itself becomes unstable and produces smaller plumes. At later times, the large-scale circulation is
destroyed and the internal waves disappear. A Reynolds number, based on the global scale, of Re5500, is
attained at this stage. Only isolated thermal plumes and vortices are present. Thus, internal waves can be
generated at finite Prandtl number fluids for sufficiently high Ra in the presence of a large-scale circulation.
Spectral analysis reveals that the kinetic energy decays with a logarithmic slope of23, while the logarithmic
slope of the thermal variance has a value of around2
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I. INTRODUCTION

Turbulent convection has been studied experimentally
many years, but much impetus has been provided by
concept of ‘‘hard-turbulent’’ convection in the last deca
@1,2#. Ra as high as 1014 has been reached in the laborato
@3#. Experiments have been conducted in low Prandtl flu
of helium gas@1# and in water@3#. One of the primary sig-
natures of ‘‘hard-turbulent’’ convection has been sugges
to be the prevalence of disconnected plumes, which are
able to reach the opposite thermal boundary layer. Suc
scenario, together with a strong ‘‘wind’’ associated with
large-scale circulation, is well suited for creating just at
the thermal boundary layers, a local inversion in the te
perature gradient. Thus, this region becomes thermally st
stratified and internal waves can be generated there, in
presence of a sufficiently strong shear flow. Hence, the c
acteristic frequency recorded by Castainget al. @2#, Wu et al.
@4#, and Vincentet al. @5# is the well-known Brunt-Va¨isälä
frequency. Numerous experimental and theoretical stu
have been carried out since that time on the shear interac
near the thermal boundaries@6–9#.

The other fundamental issue of convective turbulence
whether the scaling of the Nusselt number~Nu! with Ra goes
as Nu'Ra2/7. Spectral characteristics of ‘‘hard-turbulent
convection show that there exist logarithmic slopes a
function of the shell averaged wave number. For the kine
energy spectrum, a value of around211

5 has been found for
the logarithmic slope, while for the variance of the therm
fluctuations a value of27

5 has been inferred@10,11#. Such a
PRE 601063-651X/99/60~3!/2957~7!/$15.00
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scaling has been proposed on physical grounds by Cast
et al. @2# and is due to a thermally stratified mechanis
@12,13#, but inconsistencies with the Boussinesq, inco
pressible approximation have also been noted@8,14#.

Compared to laboratory experiments, numerical studie
‘‘hard-turbulent’’ convection have been few and far betwee
because of the inherent technical differences in the com
tational infrastructure of many institutions. A few numeric
studies have been conducted for three-dimensions either
stress-free@15,16# or with rigid boundaries@17,18#. In spite
of the simplification of the physics, two-dimensional simul
tions represent logically a first step to study this problem,
one can carry out the computation and the visualizat
much easier than for the much more cumbersome th
dimensional ~3D! simulations. Werne and co-worker
@19,20# have studied from 2D simulations the soft to ‘‘har
tubulent’’ convection and plume dynamics@21#, but these
studies were restricted to Ra less than 53107. In this study
we will use a spectral method with a high-resolution grid
study convection of Ra ranging from 107 to 108, as we are
interested in the development of waves and subsequen
furcations in the plume dynamics.

We emphasize here that direct numerical simulatio
~DNS! are needed to unveil new phenomena, especi
those concerned with the formation of secondary and tert
plumes and waves and their nonlinear interaction with
boundary layers. The purpose of this work is to obtain
high-quality DNS solution of a complicated flow before w
will attempt to simulate this with the large-eddy simulatio
~LES! approximation~e.g., Ref.@22#!.
2957 © 1999 The American Physical Society
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II. NUMERICAL ALGORITHM

The dimensionless equations describing finite Pran
number convection are in the Boussinesq approximation

“•V50, ~1!

]V

]t
5PrDV1P~Vxv1PrTez!, ~2!

]T

]t
1“•~VT!5DT1RaVzez , ~3!

where t is the dimensioneless time based on thermal dif
sion,T is the temperature deviation from the linear profile,v
is the vorticity, andez is the vertical unit vector directed
from the top to the bottom of the fluid layer. Ra is the the
mal Rayleigh number for pure based-heating and Pr is
Prandtl number. We have taken a Pr number of unity.

The scale units are the thickness of the layer, the ther
diffusive time and the temperature difference between
and bottom divided by the Rayleigh number. The therm
diffusive time is the proper scale for large Prandtl therm
turbulence. For very small Pr, the viscous-diffusive tim
would be a more suitable choice.

The numerical method used here is a spectral meth
which is based on the sine-cosine functions that are natu
ensuring the top and bottom free-slip boundary conditio
for the velocity, vertical fixed temperature gradient and ho
zontal periodicity. Such methods have been largely in use
thermal convection for finite Pr~e.g., Ref.@15#!. The time
marching is a mixed leap-frog–Crank-Nicholson two-st
scheme. We have used a modified version of a tw
dimensional code written originally for double diffusive co
vection@23#. P is the usual divergence-free spectral projec
@Pi j 5(d i j 2kikj /k2)#, with k being the wave number. Thi
is exactly equivalent to carrying out a two-step pressure c
rection scheme for the momentum equation.

Since the thickness of the boundary layers varies liked
'Ra1/3 and one can expect that the plumes are detac
parts of the boundary layers, the minimum number
~equally spaced! grid points varies such asN'Ra2/3. For
very large Rayleigh numbers and outside the boundary
ers, the assumption of thermal and velocity homogeneitie
reasonable. The aspect ratio is 3 and the initial condition
large scale flow, i.e., a single cell. The grid is equally spa
with spectral accuracy and the number of grid points isNz
5256 andNx5768 for Ra5108. Together with the tempera
ture equation, we computed the evolution of a Lagrang
tracer distribution

]C

]t
1“•~VC!50. ~4!

whereC is the tracer concentration. We started all runs w
a linear profile as the conducting temperature profile. T
local ~gradient! Richardson number~e.g., Ref.@24#!

Ri5
1

T0

]dT

]z S ]Vx

]z D 22
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is the ratio between the square of the buoyancy and turno
frequencies

Ri5N2S ]Vz

]z D 22

, ~6!

whereN is the buoyancy~Brunt-Väisälä! frequency written
in terms of the temperature and viscous-diffusive time un

N25
1

T0

]dT

]z
. ~7!

HeredT is the convective thermal deviation from the line
profile. If the local Richardson number decays below
50.25, the layer is linearly unstable to internal waves~e.g.,
Ref. @25#!. The minima for Ri correspond to highest inver
temperature gradients and the almost horizontal inverse
ers thus gravity can play the role of a restoring force. A
other dynamical output in finite Pr convective flow is th
Reynolds number Re, which measures the vigor of iner
forces.

III. RESULTS

We have initialized the solutions with two cells in a
aspect-ratio three box. Steady states were obtained for

FIG. 1. Convective temperature field. Sizes of the box areLx

53, Lz51. The Rayleigh number is Ra5108 and the Prandtl num-
ber is Pr51. The numerical resolution isNx5768, Nz5256 grid
points. Temperature history between thermal diffusive timet53
31023 TDT ~thermal diffusive time! ~a! and t5631023 TDT ~d!.
Time interval between two consecutive figures ist51023 TDT.
Initial conditions are two large counterrotating rolls.~a! t53
31023 TDT. Small plume appears near the top and thus an inte
thermal boundary layer is developed. Those plumes are bent by
very strong horizontal velocity creating a local inversion of t
temperature gradient and thus an internal thermal boundary la
This creates an ideal condition for internal waves to develop.~b! t
5431023 TDT. The wave breaks at the extremity of the new the
mal boundary layer~see the arrow!. ~c! t5531023 TDT. ~d! t
5631023 TDT. Originating from the major ascending plum
~right! and breaking near the other major descending plume~left!,
the new thermal boundary layer extends now horizontally over
whole cell. Later on, secondary thermal plumes will be created fr
this secondary internal horizontal thermal boundary layer.
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ranging between 105 and 107 by integrating up to 20 000
time steps~1 time step51026 TDT). Other types of initial
conditions may induce chaotic time-dependence even for
numbers as low as 33105, as shown in the work on infinite
Prandtl number convection@26#. For these initial conditions
the first interesting time-dependent activity was observed
108 and we will focus our attention on this high Rayleig
number because of the interesting dynamical features de
oped, such as the waves. Such a high Rayleigh numbe
108 has not been investigated before in two-dimensio
finite-Prandtl number convection.

A. Incipient stage

Convection at high Rayleigh number is characterized
the ‘‘hard-turbulent’’ regime by filaments and patches
thermal anomalies with opposite signs@2#. In these circum-
stances, the juxtaposition of hot and cold thermal anoma
becomes the rule rather than the exception. In Fig. 1 we

FIG. 2. Transverse vorticityv corresponding to Figs. 1~a!–1~d!.

FIG. 3. Local Richardson number corresponding to Figs. 1~a!–
1~d!. Color scale is for Ri,0.25. Black denotes values above
.0.25. The Ri5 1

4 values for the Richardson number are locat
mainly at the strong temperature gradients but internal waves
only be produced at the instant where the corresponding layers
almost horizontal.
a
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el-
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s
ot

the snapshots of convected thermal anomalyu, which is de-
fined to be the total temperatureT minus the conductive
temperature profileTc(z). These panels have been tak
from the early stages in the flow development, following t
initial transient. Figure 1 shows the development of the c
and hot plumes diving into the opposite bottom and t
boundary layers and branching in the process. This type
strong boundary-layer interaction produces secondary
and cold flows to develop, giving rise to a whirling interio
flow. The schematic of this type of flow is sketched in Fig.
The vertical flows have a tendency to split into second
tributaries, similar to a river delta. We see here the doub
decker nature of the horizontal boundary layers, consistin
a juxtaposition of hot and cold anomalies overlying one a
other. This condition is favorable to the production of inte
nal waves, which are observed to develop along the interf
of this double-decker boundary layer.

Figure 2 shows the corresponding temporal developm
of the vorticity v. The light and dark colors denote respe
tively the positive and negative values of the vorticity. T

an
re

FIG. 4. Schematic of flow fields displayed in Figs. 1–3. T
vertical flows have a tendency to split into secondary tributar
similar to a river delta. We observe here the double-decker natur
the horizontal boundary layers, consisting of a juxtaposition of
and cold anomalies overlying one another. Internal waves are
veloped along the interface of this double-decker boundary lay

FIG. 5. Subsequent evolution of the shear layer at timet
50.3 1022 TDT after the shear has been initiated near the bou
ary layers.~a! Temperature fluctuationu. ~b! Transverse vorticityv.
~c! Local Richardson number Ri. Only values ranging for
,0.25 are shown. Otherwise, black color for higher values.
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2960 PRE 60ALAIN P. VINCENT AND DAVID A. YUEN
wave nature is more clearly delineated by the vorticity s
nature. Its development at the bottom boundary layer is
lustrated by the arrow in the figure. The Richardson num
Ri serves as a linear criterion for the development of seco
ary shear instabilities in stratified flows~e.g., Ref.@25#!. For
Ri less than1

4, shear instabilities can develop according
linear theory@24#. In Fig. 3 we have plotted the spatial di
tribution of the local Ri associated with the frames shown
Fig. 1. We have thresholded the values of Ri to black for
above 1. The white arrows in Fig. 3 point out the bound
for Ri50.25, which coincides with the waves shown in F
2. Sharp fronts with Ri,0.25 are found at narrow zones wit
sharp gradients in the convected temperature field. In th
zones there is a strong tendency for shear instabilities
develop and to produce wavelike features. In terms of be
a valuable diagnostic tool for detecting the onset of wave
structures in thermal convection, the sharp boundaries of
Ri distribution yield the sharpest and clearest signature o
of the fields displayed up to now. Figure 4 shows a sc
matic of this type of wavelike flow.

In order to validate the idea of the Richardson num
mapping coherently with the other dynamical quantities,
have conducted the following experiment. We started
simulation with, as initial conditions, a statistically stationa
convective flow at Rayleigh number Ra5108. At time t
50, we also input a strong shear near the top and bot
boundary layers. Then we have run the simulation with
further perturbation. After 30 000 time steps, correspond
to thermal diffusive timet50.03 TDT units, we obtained, a
expected, a Kelvin-Helmholtz wavelike pattern at the bou
aries. The wave patterns are displayed clearly in Fig. 5
the temperature deviation@Fig. 5~a!#, the vorticity @Fig.
5~b!#, and the values of the Richardson number smaller t
Ri50.25 @Fig. 5~c!#.

B. Subsequent development

The flow fields at Ra5108 become evermore complex
with time. In Fig. 6 we show two subsequent snapshots
the convected thermal anomalyu(z)5T2^T&(z). We ob-

FIG. 6. Two subsequent snapshots of the convected the
anomaly u. ~a! Time is t50.9 1022 TDT. ~b! Time is t51.5
1022 TDT.

FIG. 7. Transverse vorticityv corresponding to Fig. 6~a!. The
plumes consist of two counter-rotating vortices.
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serve that many thermal inversions begin to appear and
plumes do not reach the opposite side, as characteristi
‘‘hard-turbulent’’ convection. The last vestiges of cellula
structure are destroyed in Fig. 6~b!, as small-scale feature
dominate from this point on. The Reynolds number of t
convective flow based on the integral scale ofl oz'0.25 is
Re'500, while the Reynolds number based on the Tay
microscale ofl'0.1 is Rel'200. In Fig. 7 we show the
transverse component of the vorticityvy , which reveals the
complicated nature of the vortex dynamics of the plumes
for instance the two pairs of vortices~dipoles!. The concen-
tration field is another signature which can reveal the cum
lative history of the dynamics as in the mixing of a pass
scalar. In Fig. 8 we plot the cumulative history of the mixin
of the concentration. This panel represents the superpos
of the many images and gives an idea of the overall dyna
ics of the passive scalar field. Figure 8 shows a thresh
image of the mixing and emphasizes the coherent feature
the plumes.

The spatial distribution of the local Nusselt number yiel
valuable information of the convective flux locally. Th
quantity Nu(x,z,t) can be evaluated at each time step
evaluating a local integral about the grid point. In Fig. 9 w
display the local Nu field for the time step corresponding
Fig. 6~a!. There is a maximum peak heat transfer in the he
of the plumes from the local advection. The vast disparity
the local Nu field in ‘‘hard-turbulent’’ convection has als
been pointed out by Grossmann and Lohse@9# using the
Fourier-Weierstrass expansion technique. The local Ri dis
bution for this same panel is shown in Fig. 10. We can o
serve that the zones of shear instabilities have become
tremely localized and widespread, similar to the fractur
patterns in solids@27#. Again, it is evident that the sharpnes
of the Ri signal in detecting shear instabilities is clearly s
perior to the other signatures.

IV. STATISTICAL ANALYSIS

In this section we will focus on the statistical treatment
the flow data for the various signatures. First, we presen
Fig. 11 the shell averaged spectrum of the kinetic ene

al

FIG. 8. Tracer concentrationC corresponding to Fig. 6~a!. Con-
centration gradients are located where the high vorticity gradie
are. In two-dimensional turbulence, the vorticity variance is a c
served quantity.

FIG. 9. Local Nusselt number Nu corresponding to Fig. 6~a!.
The Nusselt number is maximal in the plumes, where the conv
tive heat flux is the greatest.
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KE(k), which has been obtained by integrating over t
modulus ofk and over the last 100 000 time steps. The g
resolution is demonstrated to be quite adequate, as reve
by the sharp drop in the spectral content. Plotted above
calculated spectrum is a fiducial line with a logarithmic slo
of 23. The dissipative range is seen to lie beyondk greater
than 30. A comparison of this with the23 slope shows tha
the flow has intrinsically 2D turbulent properties as sho
by Refs.@28–30#. It also demonstrates the property of a d
rect cascade of the enstrophy at largek ~e.g., Refs.@31, 28#.

The shell averaged spectrum of the variance of the c
vected thermal anomalyu, averaged over time as in Fig. 11
is displayed in Fig. 12. We have plotted a fiducial curve w
a logarithmic slope of25

3 for visual comparison. A slope o
25

3 for the variance in ‘‘hard-turbulent’’ convection has be
predicted theoretically by Lohse@32#. Our slope for the ther-
mal variance comes close to the25

3 value in the spectra
region before the dissipative range, which begins somewh
for k greater than around 40. This slope indicates some
of inverse cascade of the energy~e.g., Ref.@31#!.

The frequency spectra of the variance should bear s
relationship to the spatial spectra according to Taylor’s
pothesis@33# and also Chillaet al. @34#. In Fig. 13 we plot
the frequency spectrum of the thermal anomalyu along with
a fiducial line with a logarithmic slope of25

3. The correla-
tion between Figs. 12 and 13 is better for low values ofk and
v.

In strongly time-dependent convection with finite Pran
number the thermal anomalies should behave as passive

FIG. 10. Local Richardson number Ri corresponding to F
6~a!. Minima for the Richardson number are located mainly wh
the temperature gradients are but internal waves can be created
when and where the corresponding layers are almost horizonta

FIG. 11. Kinetic energy spectrum corresponding to the stat
cally steady state part of the run. The slope isk23 as is the case in
two-dimensional turbulence.Ex andEz are the variance spectra fo
Vx andVz .
e
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lars @35#. In Fig. 14 we plot the shell averaged spectrum
the passive scalarC and show by comparison with the fidu
cial line ~slope of25

3! that there is indeed a similarity of th
spectrum ofC to the spectrum ofu ~Fig. 12!. The probability
distribution function~PDF! of C is shown in Fig. 15. An
exponential fall-off is clearly evident from inspection of th
figure. This exponential decay in the PDF agrees with
theoretical prediction of the PDF in high Rayleigh numb
convection for finite Prandtl number fluids by Yakhot@35#.

V. CONCLUDING REMARKS

We have conducted a high-resolution numerical inve
gation of high Rayleigh number convection for Ra5108 and
a Prandtl number of 1. These simulations employing
spectral methods, reveal many fine features, such as the
ence of waves, a local inversion of temperature next to
boundary layers, and double-decker boundary layers, wh
have not been observed before in previous 2D simulati
for finite Prandtl number convection@19,20# conducted for
Ra between 107 and 108. Our two-dimensional simulations
show that it may not be possible to maintain a large-sc
flow under these ‘‘hard-turbulent’’ situations, because of t

FIG. 13. Frequency spectrum of the time history of the therm
anomalyu at a single point.

.
e
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FIG. 12. Thermal variance spectrum corresponding to Fig
The slope isk25/3. This indicates the presence of inverse casca
The large-scale energy arises from the small thermal scales.
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2962 PRE 60ALAIN P. VINCENT AND DAVID A. YUEN
ever-increasing time-dependent generation of smaller
smaller boundary layer instabilities. We have based th
conclusions on a simulation, which has exceeded over5

time steps.
We have observed the development of gravity waves

this high Ra convective flow and the generation of a seco
ary thermal boundary layer from a single elongated plum
Secondary plumes may be produced from this new inte
boundary layer. The signature of the local Richardson nu
ber has revealed clearly the sites of these shear instabi
occurring within a buoyancy-driven flow. The distribution
the local Nusselt number also based shows that the m
significant convective thermal transport induced by adjec
straining are developed in the vertical plumes and they
pear as discrete coherent structures embedded within
plumes. Similar signs of these localized features are a
revealed by the vorticity and tracer distribution. Jetlike stru
tures are found to develop and branch out within the vert
flows, as in a river approaching a delta.

Spectral analysis has shown that the thermal anoma
behave as a passive scalar from both the spectra of the
mal variance and the tracer field, which display a logarithm
slope of25

3. On the other hand, the kinetic energy spectr
yields a logarithmic slope of23, lending some support to th

FIG. 14. Tracer variance spectrum corresponding to Fig. 8.
slope isk25/3. There is neither buoyancy nor dissipation acting
the tracer field. The tracer is focussed at where the entrosph
large. The vortical part of the plumes~heads of the plumes! corre-
sponds to vorticity and thus to inverse cascade of the kinetic ene
h-
, J

v
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flow behaving with two-dimensional turbulent character
tics.

With the current computational power~10 GF lops! and
memory resources~up to 10 Gbytes!, much higher Ra con-
vection ~up to 1014) is very feasible in two-dimensions bu
much more difficult in 3D, because of both hardware a
software issues dealing with storage of extremely large d
sets and the attendant visualisation. To our mind, it is vita
important first to study in great detail the dynamics enco
tered at Ra5108, which represents a noticeable leap past
‘‘hard-turbulent’’ boundary at around 43107 @2,19,20#. In
this study, we did not find any of the ‘‘turbulent plumes
predicted by Rieutord and Zahn@36# for stellar convection
and seen in Brandenburget al. @37#. Perhaps they may occu
at higher Rayleigh numbers. This is a subject for futu
study.
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